Continual Learning, also known as Lifelong or Incremental Learning, has recently gained renewed interest among the Artificial Intelligence research community. Recent research efforts have quickly led to the design of novel algorithms able to reduce the impact of the catastrophic forgetting phenomenon in deep neural networks. Due to this surge of interest in the field, many competitions have been held in recent years, as they are an excellent opportunity to stimulate research in promising directions. This paper summarizes the ideas, design choices, rules, and results of the challenge held at the 3rd Continual Learning in Computer Vision (CLVision) Workshop at CVPR 2022. The focus of this competition is the complex continual object detection task, which is still underexplored in literature compared to classification tasks. The challenge is based on the challenge version of the novel EgoObjects dataset, a large-scale egocentric object dataset explicitly designed to benchmark continual learning algorithms for egocentric category-/instance-level object understanding, which covers more than 1k unique main objects and 250+ categories in around 100k video frames.
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
多对象跟踪(MOT)是一项具有挑战性的任务,涉及检测场景中的对象并通过一系列帧跟踪它们。由于时间阻塞以及一系列图像序列的变化,评估此任务很困难。 Kitti等数据集上基准MOT方法的主要评估度量已成为高阶跟踪准确性(HOTA)度量,该指标能够更好地描述MOTA,DETA和IDF1等指标的性能。点检测和跟踪是一项密切相关的任务,可以将其视为对象检测的特殊情况。但是,评估检测任务本身(点距离与边界框重叠)存在差异。当包括时间维度和多视图方案时,评估任务变得更加复杂。在这项工作中,我们提出了一个多视图高阶跟踪指标(MVHOTA),以确定多点(多企业和多级)检测的准确性,同时考虑到时间和空间关联。 MVHOTA可以解释为检测,关联和对应准确性的几何平均值,从而为每个因素提供相等的权重。我们通过以前有组织的医疗挑战中的公开内窥镜检测数据集证明了用例。此外,我们与此用例的其他调整后的MOT指标进行比较,讨论MVHOTA的属性,并展示提出的对应准确性和闭塞指数如何促进对闭塞处理方法的分析。该代码将公开可用。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
目的:二尖瓣修复是心脏瓣膜的复杂微创手术。在这种情况下,来自内窥镜图像的缝合线检测是一种高度相关的任务,该任务提供了分析缝合模式的定量信息,评估假肢配置并产生增强的现实可视化。面部或解剖标志性的检测任务通常包含固定数量的地标,并使用回归或固定的基于热线图的方法来定位标志性。然而,在内窥镜检查中,每个图像中存在不同数量的缝合线,并且缝合线可能发生在环形空中的任何位置,因为它们不是语义唯一的。方法:在这项工作中,我们将缝合检测任务制定为多实例的深热映射回归问题,以识别缝合线的进入和退出点。我们扩展了我们以前的工作,并介绍了一个新颖的使用2D高斯层,然后是可分辨率的2D空间软氩模层作为局部非最大抑制。结果:我们用多种热映射分布功能和所提出的模型的两个变体呈现广泛的实验。在术中帧内结构域中,变体1在基线上显示了+0.0422的平均f1。类似地,在模拟器域中,变体1在基线上显示了+0.0865的平均f1。结论:拟议的模型显示出在帧内和模拟器域中的基线上的改进。在Miccai Adaptor2021挑战HTTPS://Adaptor2021.github.io/的范围内公开可用,以及https://github.com/cardio-ai/suture-detection-pytorch/的代码。 DOI:10.1007 / S11548-021-02523-W。可以在此处找到与开放式接入文章的链接:https://link.springer.com/article/10.1007%2FS11548-021-02523
translated by 谷歌翻译
在结肠息肉是众所周知的如通过结肠镜检查鉴定的癌症的前体或者有关诊断工作为症状,结肠直肠癌筛查或某些疾病的系统的监视。虽然大部分息肉是良性的,在数量,尺寸和息肉的表面结构是紧密相连的结肠癌的风险。有高的漏检率和不完全去除结肠息肉的存在由于可变性质,困难描绘异常,高复发率和结肠的解剖外形。过去,多种方法已建成自动化息肉检测与分割。然而,大多数方法的关键问题是,他们没有经过严格的大型多中心的专用数据集进行测试。因此,这些方法可能无法推广到不同人群的数据集,因为他们过度拟合到一个特定的人口和内镜监控。在这个意义上,我们已经从整合超过300名患者6个不同的中心策划的数据集。所述数据集包括与由六名高级肠胃验证息肉边界的精确划定3446个注释息肉标签单帧和序列数据。据我们所知,这是由一组计算科学家和专家肠胃的策划最全面的检测和像素级的细分数据集。此数据集已在起源的Endocv2021挑战旨在息肉检测与分割处理可推广的一部分。在本文中,我们提供全面的洞察数据结构和注释策略,标注的质量保证和技术验证我们的扩展EndoCV2021数据集,我们称之为PolypGen。
translated by 谷歌翻译
本文研究了具有对抗性误差的强大一位压缩感应的二进制分类。假设该模型过度分配,并且感兴趣的参数有效稀疏。adaboost被考虑,并且通过其与MAX - $ \ ell_1 $ -Margin-Scressifir的关系,派生预测错误界限。开发的理论是一般的,并且允许重型的特征分布,只需要一个薄弱的时刻假设和抗浓缩条件。当特征满足小偏差下限时,示出了改善的收敛速率。特别是,结果提供了解释为什么内插对抗性噪声对于分类问题可以是无害的。模拟说明了所提出的理论。
translated by 谷歌翻译